{ "id": "1809.05974", "version": "v1", "published": "2018-09-16T22:52:11.000Z", "updated": "2018-09-16T22:52:11.000Z", "title": "The extremal function for $K_9^=$ minors", "authors": [ "Martin Rolek" ], "categories": [ "math.CO" ], "abstract": "We prove the extremal function for $K_9^=$ minors, where $K_9^=$ denotes the complete graph $K_9$ with two edges removed. In particular, we show that any graph with $n$ vertices and at least $6n - 20$ edges either contains a $K_9^=$ minor or is isomorphic to a graph obtained from disjoint copies of $K_8$ and $K_{2, 2, 2, 2, 2}$ by identifying cliques of size 5. We utilize computer assistance to prove one of our lemmas.", "revisions": [ { "version": "v1", "updated": "2018-09-16T22:52:11.000Z" } ], "analyses": { "keywords": [ "extremal function", "complete graph", "disjoint copies", "utilize computer assistance", "identifying cliques" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }