{ "id": "1809.04586", "version": "v1", "published": "2018-09-12T17:50:26.000Z", "updated": "2018-09-12T17:50:26.000Z", "title": "The Bernstein problem for Lipschitz intrinsic graphs in the Heisenberg group", "authors": [ "Sebastiano Nicolussi", "Francesco Serra Cassano" ], "comment": "29 pages, 2 figures", "categories": [ "math.DG" ], "abstract": "We prove that, in the first Heisenberg group $\\mathbb{H}$, an entire locally Lipschitz intrinsic graph admitting vanishing first variation of its sub-Riemannian area and non-negative second variation must be an intrinsic plane, i.e., a coset of a two dimensional subgroup of $\\mathbb{H}$. Moreover two examples are given for stressing result's sharpness.", "revisions": [ { "version": "v1", "updated": "2018-09-12T17:50:26.000Z" } ], "analyses": { "subjects": [ "53C17", "49Q20" ], "keywords": [ "heisenberg group", "bernstein problem", "locally lipschitz intrinsic graph", "graph admitting vanishing first", "lipschitz intrinsic graph admitting" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }