{ "id": "1809.03310", "version": "v1", "published": "2018-09-10T13:47:23.000Z", "updated": "2018-09-10T13:47:23.000Z", "title": "Global existence and boundedness in a chemotaxis-Stokes system with slow $p$-Laplacian diffusion", "authors": [ "Weirun Tao", "Yuxiang Li" ], "comment": "28 pages", "categories": [ "math.AP" ], "abstract": "This paper deals with a boundary-value problem in three-dimensional smooth bounded convex domains for the coupled chemotaxis-Stokes system with slow $p$-Laplacian diffusion \\begin{equation} \\left\\{ \\begin{aligned} &n_t+u\\cdot\\nabla n=\\nabla\\cdot\\left(|\\nabla n|^{p-2}\\nabla n\\right)-\\nabla\\cdot(n\\nabla c), &x\\in\\Omega,\\ t>0,\\ \\ &c_t+u\\cdot\\nabla c=\\Delta c-nc,&x\\in\\Omega,\\ t>0,\\ \\ &u_t=\\Delta u+\\nabla P+n\\nabla\\phi ,&x\\in\\Omega,\\ t>0,\\ \\ &\\nabla\\cdot u=0, &x\\in\\Omega,\\ t>0,\\ \\ \\end{aligned} \\right. \\end{equation} where $\\phi\\in W^{2,\\infty}(\\Omega)$ is the gravitational potential. It is proved that global bounded weak solutions exist whenever $p>\\frac{23}{11}$ and the initial data $(n_0,c_0,u_0)$ are sufficiently regular satisfying $n_0\\geq 0$ and $c_0\\geq 0$.", "revisions": [ { "version": "v1", "updated": "2018-09-10T13:47:23.000Z" } ], "analyses": { "subjects": [ "35Q92", "35K55", "35Q35", "76S05", "92C17" ], "keywords": [ "laplacian diffusion", "global existence", "three-dimensional smooth bounded convex domains", "boundedness", "global bounded weak solutions" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }