{ "id": "1809.01300", "version": "v1", "published": "2018-09-05T02:16:19.000Z", "updated": "2018-09-05T02:16:19.000Z", "title": "Uniform Estimates for Oscillatory Integral Operators with Polynomial Phases", "authors": [ "Zuoshunhua Shi" ], "comment": "50 pages", "categories": [ "math.CA" ], "abstract": "In this paper, we shall prove the uniform sharp $L^p$ decay estimates for a class of oscillatory integral operators with polynomial phases. By this one-dimensional result, we can use the rotation method to obtain uniform sharp $L^p$ estimates of certain higher-dimensional oscillatory integral operators.", "revisions": [ { "version": "v1", "updated": "2018-09-05T02:16:19.000Z" } ], "analyses": { "subjects": [ "47G10", "44A05" ], "keywords": [ "polynomial phases", "uniform estimates", "higher-dimensional oscillatory integral operators", "uniform sharp", "decay estimates" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }