{ "id": "1809.00468", "version": "v1", "published": "2018-09-03T07:07:15.000Z", "updated": "2018-09-03T07:07:15.000Z", "title": "Improved bounds for the extremal number of subdivisions", "authors": [ "Oliver Janzer" ], "comment": "5 pages", "categories": [ "math.CO" ], "abstract": "Let $H_t$ be the subdivision of $K_t$. Very recently, Conlon and Lee have proved that for any integer $t\\geq 3$, there exists a constant $C$ such that $\\text{ex}(n,H_t)\\leq Cn^{3/2-1/6^t}$. In this paper, we prove that there exists a constant $C'$ such that $\\text{ex}(n,H_t)\\leq C'n^{3/2-\\frac{1}{4t-6}}$.", "revisions": [ { "version": "v1", "updated": "2018-09-03T07:07:15.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "extremal number", "subdivision" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }