{ "id": "1808.10408", "version": "v1", "published": "2018-08-30T17:27:48.000Z", "updated": "2018-08-30T17:27:48.000Z", "title": "On the inhomogeneity of the Mandelbrot set", "authors": [ "Yusheng Luo" ], "categories": [ "math.DS" ], "abstract": "We will show the Mandelbrot set $M$ is locally conformally inhomogeneous: the only conformal map $f$ defined in an open set $U$ intersecting $\\partial M$ and satisfying $f(U\\cap\\partial M)\\subset \\partial M$ is the identity map. The proof uses the study of local conformal symmetries of the Julia sets of polynomials: we will show in many cases, the dynamics can be recovered from the local conformal structure of the Julia sets.", "revisions": [ { "version": "v1", "updated": "2018-08-30T17:27:48.000Z" } ], "analyses": { "keywords": [ "mandelbrot set", "inhomogeneity", "julia sets", "local conformal structure", "local conformal symmetries" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }