{ "id": "1808.09867", "version": "v1", "published": "2018-08-29T15:01:55.000Z", "updated": "2018-08-29T15:01:55.000Z", "title": "Quasilinear rough partial differential equations with transport noise", "authors": [ "Antoine Hocquet" ], "categories": [ "math.PR", "math.AP" ], "abstract": "We investigate the Cauchy problem for a quasilinear equation of the form $\\mathrm d u=\\mathrm{div}(A(t,x,u)\\nabla u)\\mathrm d t +\\sigma (t,x)\\nabla u\\mathrm d X,$ $u_0\\in L^2$ on the torus $\\mathbb T^d$, where $X$ is a two-step geometric rough path. Using an energy approach, we provide sufficient conditions guaranteeing existence and uniqueness.", "revisions": [ { "version": "v1", "updated": "2018-08-29T15:01:55.000Z" } ], "analyses": { "subjects": [ "60H15", "35A15", "35K59" ], "keywords": [ "quasilinear rough partial differential equations", "transport noise", "two-step geometric rough path", "sufficient conditions guaranteeing existence", "cauchy problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }