{ "id": "1808.09803", "version": "v1", "published": "2018-08-22T17:29:49.000Z", "updated": "2018-08-22T17:29:49.000Z", "title": "Normalized image of a vector by an infinite product of nonnegative matrices", "authors": [ "Alain Thomas" ], "comment": "32 pages", "categories": [ "math.FA", "math.DS" ], "abstract": "Let $P_n=A_1\\cdots A_n$~, where $\\mathcal A=(A_n)_{n\\in\\mathbb N}$ is a sequence of $d\\times d$ matrices, and let $V$ be a $d$-dimensional column-vector. We call \"normalized image of~$V$ by the infinite product of the matrices $A_n$\", the vector $\\lim_{n\\to\\infty}P_nV/{\\Vert P_nV\\Vert}$ if exists. In general the sequence of matrices $n\\mapsto P_n/{\\Vert P_n\\Vert}$ does not converge but, under some sufficient conditions specified in Theorem~A the sequence of vectors $n\\mapsto P_nV/{\\Vert P_nV\\Vert}$ converges. We use Theorem~A to prove that certain sofic (i.e. linearly representable) measures satisfy the multifractal formalism.", "revisions": [ { "version": "v1", "updated": "2018-08-22T17:29:49.000Z" } ], "analyses": { "subjects": [ "15B48", "28A12" ], "keywords": [ "infinite product", "normalized image", "nonnegative matrices", "multifractal formalism", "sufficient conditions" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }