{ "id": "1808.09672", "version": "v1", "published": "2018-08-29T08:03:40.000Z", "updated": "2018-08-29T08:03:40.000Z", "title": "On the minimum number of facets of a 2-neighborly polytope", "authors": [ "Aleksandr Maksimenko" ], "comment": "10 pages, 1 figure, 1 table", "categories": [ "math.CO" ], "abstract": "Let $\\mu_{\\text{2n}}(d,v)$ (respectively, $\\mu^{\\text{s}}_{\\text{2n}}(d,v)$) be the minimal number of facets of a (simplicial) 2-neighborly $d$-polytope with $v$ vertices, $v > d \\ge 4$. It is known that $\\mu_{\\text{2n}}(4,v) = v (v-3)/2$, $\\mu_{\\text{2n}}(d, d+2) = d+5$, $\\mu_{\\text{2n}}(d,d+3) = d+7$ for $d \\ge 5$, and $\\mu_{\\text{2n}}(d,d+4) \\in [d+5, d+8]$ for $d \\ge 6$. We show that $\\mu_{\\text{2n}}(5, v) = \\Omega(v^{4/3})$, $\\mu_{\\text{2n}}(6, v) \\ge v$, and the equality $\\mu_{\\text{2n}}(6, v) = v$ holds only for a simplex and for a dual 2-neighborly 6-polytope (if it exists) with $v \\ge 27$. By using $g$-theorem, we get $\\mu^{\\text{s}}_{\\text{2n}}(d, v) = \\Delta (\\Delta(d-3) + 3d - 5)/2 + d + 1$, where $\\Delta = v - d - 1$. Also we show that $\\mu_{\\text{2n}}(d, v) \\ge d+7$ for $v \\ge d+4$.", "revisions": [ { "version": "v1", "updated": "2018-08-29T08:03:40.000Z" } ], "analyses": { "subjects": [ "52B05" ], "keywords": [ "minimum number", "minimal number", "simplicial" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }