{ "id": "1808.09433", "version": "v1", "published": "2018-08-28T17:47:48.000Z", "updated": "2018-08-28T17:47:48.000Z", "title": "The Breuil--Mézard conjecture for function fields", "authors": [ "Zijian Yao" ], "categories": [ "math.NT", "math.RT" ], "abstract": "Let $K$ be a local function field of characteristic $l$, $\\mathbb{F}$ be a finite field over $\\mathbb{F}_p$ where $l \\ne p$, and $\\overline{\\rho}: G_K \\rightarrow \\text{GL}_n (\\mathbb{F})$ be a continuous representation. We apply the Taylor-Wiles-Kisin method over certain global function fields to construct a mod $p$ cycle map $\\overline{\\text{cyc}}$, from mod $p$ representations of $\\text{GL}_n (\\mathcal{O}_K)$ to the mod $p$ fibers of the framed universal deformation ring $R_{\\overline{\\rho}}^\\square$. This allows us to obtain a function field analog of the Breuil--M\\'ezard conjecture. Then we use the technique of close fields to show that our result is compatible with the Breuil-M\\'ezard conjecture for local number fields in the case of $l \\ne p$, obtained by Shotton.", "revisions": [ { "version": "v1", "updated": "2018-08-28T17:47:48.000Z" } ], "analyses": { "keywords": [ "breuil-mézard conjecture", "breuil-mezard conjecture", "function field analog", "local function field", "local number fields" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }