{ "id": "1808.08849", "version": "v1", "published": "2018-08-27T13:59:38.000Z", "updated": "2018-08-27T13:59:38.000Z", "title": "Lipschitz equivalence of self-similar sets with exact overlaps", "authors": [ "Kan Jiang", "Songjing Wang", "Lifeng Xi" ], "journal": "Ann.Acad.Sci.Fenn.Math., Volumen 43, 905-912, 2018", "categories": [ "math.DS", "math.MG" ], "abstract": "In this paper, we study a class $\\mathcal{A}(\\lambda ,n,m)$ of self-similar sets with $m$ exact overlaps generated by $n$ similitudes of the same ratio $ \\lambda $. We obtain a necessary condition for a self-similar set in $\\mathcal{A}(\\lambda ,n,m)$ to be Lipschitz equivalent to a self-similar set satisfying the strong separation condition, i.e., there exists an integer $ k\\geq 2$ such that $x^{2k}-mx^{k}+n$ is reducible, in particular, $m$ belongs to $\\{a^{i}:a\\in \\mathbb{N}$ with $i\\geq 2\\}.$", "revisions": [ { "version": "v1", "updated": "2018-08-27T13:59:38.000Z" } ], "analyses": { "keywords": [ "exact overlaps", "lipschitz equivalence", "strong separation condition", "lipschitz equivalent", "necessary condition" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }