{ "id": "1808.08484", "version": "v1", "published": "2018-08-26T00:00:54.000Z", "updated": "2018-08-26T00:00:54.000Z", "title": "A super Schur-Weyl reciprocity for cyclotomic Hecke algebras", "authors": [ "Deke Zhao" ], "categories": [ "math.RT", "math.QA" ], "abstract": "Let $U_q(\\mathfrak{g})$ be the quantized superalgebra of $\\mathfrak{g}=\\mathfrak{gl}(k_1|\\ell_1)\\oplus\\cdots\\oplus\\mathfrak{gl}(k_m|\\ell_m)$ and $H_{m,n}(q,\\mathbf{Q})$ the cyclotomic Hecke algebra of type $G(m,1,n)$. We define a right $H_{m,n}(q,\\mathbf{Q})$-action on the $n$-fold tensor (super)space of the vector representation of $U_q(\\mathfrak{g})$ and prove the Schur--Weyl reciprocity between $U_q(\\mathfak{g})$ and $H_{m,n}(q,\\mathbf{Q})$.", "revisions": [ { "version": "v1", "updated": "2018-08-26T00:00:54.000Z" } ], "analyses": { "keywords": [ "cyclotomic hecke algebra", "super schur-weyl reciprocity", "fold tensor", "vector representation", "quantized superalgebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }