{ "id": "1808.08227", "version": "v1", "published": "2018-08-24T17:51:50.000Z", "updated": "2018-08-24T17:51:50.000Z", "title": "Caffarelli-Kohn-Nirenberg inequalities on Besov and Triebel-Lizorkin-type spaces", "authors": [ "Douadi Drihem" ], "comment": "24 pages", "categories": [ "math.FA" ], "abstract": "We present some Caffarelli-Kohn-Nirenberg-type inequalities on Herz-type Besov-Triebel-Lizorkin spaces. More Precisely, we investigate the inequalities \\begin{equation*} \\big\\|f\\big\\|_{\\dot{k}_{v,\\sigma}^{\\alpha _1,r}} \\leq c\\big\\|f\\big\\|_{\\dot{K}_u^{\\alpha _2,\\delta}}^{1-\\theta } \\big\\|f\\big\\|_{\\dot{K}_p^{\\alpha_3,\\delta _1} A_{\\beta }^s}^\\theta, \\end{equation*} with some appropriate assumptions on the parameters, where $\\dot{k}_{v,\\sigma }^{\\alpha _{1},r}$ is the Herz-type Bessel potential spaces. To do these, we study when distributions belonging to these spaces can be interpreted as functions in $L_{\\mathrm{loc}}^{1}$. Our main tools is the usual Littlewood-Paley technique, Sobolev and Franke embeddings, and interpolation theory. Our results improve their results in some sense.", "revisions": [ { "version": "v1", "updated": "2018-08-24T17:51:50.000Z" } ], "analyses": { "subjects": [ "46B70", "46E35" ], "keywords": [ "triebel-lizorkin-type spaces", "caffarelli-kohn-nirenberg inequalities", "herz-type bessel potential spaces", "usual littlewood-paley technique", "herz-type besov-triebel-lizorkin spaces" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }