{ "id": "1808.07794", "version": "v1", "published": "2018-08-23T15:10:52.000Z", "updated": "2018-08-23T15:10:52.000Z", "title": "The Hermite-Hadamard inequality in higher dimensions", "authors": [ "Stefan Steinerberger" ], "categories": [ "math.CA", "math.FA" ], "abstract": "The Hermite-Hadamard inequality states that the average value of a convex function on an interval is bounded from above by the average value of the function at the endpoints of the interval. We provide a generalization to higher dimensions: let $\\Omega \\subset \\mathbb{R}^n$ be a convex domain and let $f:\\Omega \\rightarrow \\mathbb{R}$ be a convex function, then $$ \\frac{1}{|\\Omega|} \\int_{\\Omega}{f ~d \\mathcal{H}^n} \\leq \\frac{n^{n+1}}{|\\partial \\Omega|} \\int_{\\partial \\Omega}{f~d \\mathcal{H}^{n-1}}.$$ The constant $n^{n+1}$ is presumably far from optimal, however, it cannot be replaced by 1 in general. We also show, for some universal constant $c>0$, if $\\Omega \\subset \\mathbb{R}^2$ is simply connected with smooth boundary, $f:\\Omega \\rightarrow \\mathbb{R}_{}$ is subharmonic, i.e. $\\Delta f \\geq 0$, and $f \\big|_{\\partial \\Omega} \\geq 0$, then $$ \\int_{\\Omega}{f~ d \\mathcal{H}^2} \\leq c \\cdot \\mbox{inradius}(\\Omega) \\int_{\\partial \\Omega}{ f ~d\\mathcal{H}^{1}}.$$ We also prove that every domain $\\Omega \\subset \\mathbb{R}^n$ whose boundary is 'flat' at a certain scale $\\delta$ admits a Hermite-Hadamard inequality for all subharmonic functions with a constant depending only on the dimension, the measure $|\\Omega|$ and the scale $\\delta$.", "revisions": [ { "version": "v1", "updated": "2018-08-23T15:10:52.000Z" } ], "analyses": { "keywords": [ "higher dimensions", "average value", "convex function", "hermite-hadamard inequality states", "subharmonic functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }