{ "id": "1808.07550", "version": "v1", "published": "2018-08-22T20:11:37.000Z", "updated": "2018-08-22T20:11:37.000Z", "title": "On Gaps in the Closures of Images of Divisor Functions", "authors": [ "Niven Achenjang", "Aaron Berger" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "Given a complex number $c$, define the divisor function $\\sigma_c:\\mathbb N\\to\\mathbb C$ by $\\sigma_c(n)=\\sum_{d\\mid n}d^c$. In this paper, we look at $\\overline{\\sigma_{-r}(\\mathbb N)}$, the topological closures of the image of $\\sigma_{-r}$, when $r>1$. We exhibit new lower bounds on the number of connected components of $\\overline{\\sigma_{-r}(\\mathbb N)}$, bringing this bound from linear in $r$ to exponential. Finally, we discuss the general structure of gaps of $\\overline{\\sigma_{-r}(\\mathbb N)}$ in order to work towards a possible monotonicity result.", "revisions": [ { "version": "v1", "updated": "2018-08-22T20:11:37.000Z" } ], "analyses": { "subjects": [ "11A25", "11N64" ], "keywords": [ "divisor function", "general structure", "lower bounds", "monotonicity result", "complex number" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }