{ "id": "1808.06851", "version": "v1", "published": "2018-08-21T11:29:27.000Z", "updated": "2018-08-21T11:29:27.000Z", "title": "Breuil-Mézard conjectures for central division algebras", "authors": [ "Andrea Dotto" ], "comment": "26 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "We formulate an analogue of the Breuil-M\\'ezard conjecture for the group of units of a central division algebra over a $p$-adic local field, and we prove that it follows from the conjecture for $\\mathrm{GL}_n$. To do so we construct a transfer of inertial types and Serre weights between the maximal compact subgroups of these two groups, in terms of Deligne-Lusztig theory, and we prove its compatibility with mod $p$ reduction, via the inertial Jacquet-Langlands correspondence and certain explicit character formulas. We also prove analogous statements for $\\ell$-adic coefficients.", "revisions": [ { "version": "v1", "updated": "2018-08-21T11:29:27.000Z" } ], "analyses": { "keywords": [ "central division algebra", "breuil-mézard conjectures", "adic local field", "maximal compact subgroups", "inertial jacquet-langlands correspondence" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }