{ "id": "1808.06782", "version": "v1", "published": "2018-08-21T06:51:08.000Z", "updated": "2018-08-21T06:51:08.000Z", "title": "The divisibility of zeta functions of cyclotomic function fields", "authors": [ "Daisuke Shiomi" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we generalize Bernoulli-Goss polynomials, and give a criterion on the divisibility of zeta functions of cyclotomic function fields. As an application of our criterion, for a given polynomial $f(u)$, we prove that there are infinitely many cyclotomic function fields whose zeta polynomial is divided by $f(u)$.", "revisions": [ { "version": "v1", "updated": "2018-08-21T06:51:08.000Z" } ], "analyses": { "keywords": [ "cyclotomic function fields", "zeta functions", "divisibility", "zeta polynomial" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }