{ "id": "1808.06276", "version": "v1", "published": "2018-08-20T00:32:21.000Z", "updated": "2018-08-20T00:32:21.000Z", "title": "On the knot quandle of the twist-spun trefoil", "authors": [ "Ayumu Inoue" ], "comment": "11 pages, 4 figures", "categories": [ "math.GT" ], "abstract": "We show that the knot quandle of the $3$-, $4$-, or $5$-twist-spun trefoil is isomorphic to a quandle related to the $16$-, $24$-, or $600$-cell respectively. We further show that the cardinality of the knot quandle of the $m$-twist-spun trefoil is finite if and only if $1 \\leq m \\leq 5$. This phenomenon is attributable to the fact that the regular tessellation $\\{ 3, m \\}$, in the sense of the Schl\\\"{a}fli symbol, consists of infinite triangles if $m$ is greater than or equal to 6.", "revisions": [ { "version": "v1", "updated": "2018-08-20T00:32:21.000Z" } ], "analyses": { "subjects": [ "57Q45", "52B15" ], "keywords": [ "twist-spun trefoil", "knot quandle", "regular tessellation", "infinite triangles", "cardinality" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }