{ "id": "1808.05316", "version": "v1", "published": "2018-08-16T00:46:09.000Z", "updated": "2018-08-16T00:46:09.000Z", "title": "A Trudinger-Moser inequality for conical metric in the unit ball", "authors": [ "Yunyan Yang", "Xiaobao Zhu" ], "comment": "12 pages", "categories": [ "math.AP" ], "abstract": "In this note, we prove a Trudinger-Moser inequality for conical metric in the unit ball. Precisely, let $\\mathbb{B}$ be the unit ball in $\\mathbb{R}^N$ $(N\\geq 2)$, $p>1$, $g=|x|^{\\frac{2p}{N}\\beta}(dx_1^2+\\cdots+dx_N^2)$ be a conical metric on $\\mathbb{B}$, and $\\lambda_p(\\mathbb{B})=\\inf\\left\\{\\int_\\mathbb{B}|\\nabla u|^Ndx: u\\in W_0^{1,N}(\\mathbb{B}),\\,\\int_\\mathbb{B}|u|^pdx=1\\right\\}$. We prove that for any $\\beta\\geq 0$ and $\\alpha<(1+\\frac{p}{N}\\beta)^{N-1+\\frac{N}{p}}\\lambda_p(\\mathbb{B})$, there exists a constant $C$ such that for all radially symmetric functions $u\\in W_0^{1,N}(\\mathbb{B})$ with $\\int_\\mathbb{B}|\\nabla u|^Ndx-\\alpha(\\int_\\mathbb{B}|u|^p|x|^{p\\beta}dx)^{N/p}\\leq 1$, there holds $$\\int_\\mathbb{B}e^{\\alpha_N(1+\\frac{p}{N}\\beta)|u|^{\\frac{N}{N-1}}}|x|^{p\\beta}dx\\leq C,$$ where $|x|^{p\\beta}dx=dv_g$, $\\alpha_N=N\\omega_{N-1}^{1/(N-1)}$, $\\omega_{N-1}$ is the area of the unit sphere in $\\mathbb{R}^N$; moreover, extremal functions for such inequalities exist. The case $p=N$, $-1<\\beta<0$ and $\\alpha=0$ was considered by Adimurthi-Sandeep \\cite{A-S}, while the case $p=N=2$, $\\beta\\geq 0$ and $\\alpha=0$ was studied by de Figueiredo-do \\'O-dos Santos \\cite{F-do-dos}.", "revisions": [ { "version": "v1", "updated": "2018-08-16T00:46:09.000Z" } ], "analyses": { "subjects": [ "35J15", "46E35" ], "keywords": [ "unit ball", "conical metric", "trudinger-moser inequality", "figueiredo-do o-dos santos", "radially symmetric functions" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }