{ "id": "1808.04956", "version": "v1", "published": "2018-08-15T03:23:53.000Z", "updated": "2018-08-15T03:23:53.000Z", "title": "On Local Antimagic Vertex Coloring for Corona Products of Graphs", "authors": [ "S. Arumugam", "Yi-Chun Lee", "K. Premalatha", "Tao-Ming Wang" ], "comment": "29 pages, 16 figures", "categories": [ "math.CO" ], "abstract": "Let $G = (V, E)$ be a finite simple undirected graph without $K_2$ components. A bijection $f : E \\rightarrow \\{1, 2,\\cdots, |E|\\}$ is called a {\\bf local antimagic labeling} if for any two adjacent vertices $u$ and $v$, they have different vertex sums, i.e. $w(u) \\neq w(v)$, where the vertex sum $w(u) = \\sum_{e \\in E(u)} f(e)$, and $E(u)$ is the set of edges incident to $u$. Thus any local antimagic labeling induces a proper vertex coloring of $G$ where the vertex $v$ is assigned the color(vertex sum) $w(v)$. The {\\bf local antimagic chromatic number} $\\chi_{la}(G)$ is the minimum number of colors taken over all colorings induced by local antimagic labelings of $G$. In this article among others we determine completely the local antimagic chromatic number $\\chi_{la}(G\\circ \\overline{K_m})$ for the corona product of a graph $G$ with the null graph $\\overline{K_m}$ on $m\\geq 1$ vertices, when $G$ is a path $P_n$, a cycle $C_n$, and a complete graph $K_n$.", "revisions": [ { "version": "v1", "updated": "2018-08-15T03:23:53.000Z" } ], "analyses": { "subjects": [ "05C15", "05C78" ], "keywords": [ "local antimagic vertex coloring", "corona product", "local antimagic chromatic number", "vertex sum", "local antimagic labeling induces" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }