{ "id": "1808.04954", "version": "v1", "published": "2018-08-15T03:13:17.000Z", "updated": "2018-08-15T03:13:17.000Z", "title": "Rainbow matchings in properly-colored hypergraphs", "authors": [ "Hao Huang", "Tong Li", "Guanghui Wang" ], "categories": [ "math.CO" ], "abstract": "A hypergraph $H$ is properly colored if for every vertex $v\\in V(H)$, all the edges incident to $v$ have distinct colors. In this paper, we show that if $H_{1}$, \\cdots, $H_{s}$ are properly-colored $k$-uniform hypergraphs on $n$ vertices, where $n\\geq3k^{2}s$, and $e(H_{i})>{{n}\\choose {k}}-{{n-s+1}\\choose {k}}$, then there exists a rainbow matching of size $s$, containing one edge from each $H_i$. This generalizes some previous results on the Erd\\H{o}s Matching Conjecture.", "revisions": [ { "version": "v1", "updated": "2018-08-15T03:13:17.000Z" } ], "analyses": { "keywords": [ "rainbow matching", "properly-colored hypergraphs", "edges incident", "distinct colors" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }