{ "id": "1808.03674", "version": "v1", "published": "2018-08-10T18:58:22.000Z", "updated": "2018-08-10T18:58:22.000Z", "title": "Infinitely many solutions for a Hénon-type system in hyperbolic space", "authors": [ "Patrícia Leal da Cunha", "Flávio Almeida Lemos" ], "comment": "12 pages", "categories": [ "math.AP" ], "abstract": "This paper is devoted to study the semilinear elliptic system of H\\'enon-type \\begin{eqnarray*} -\\Delta_{\\mathbb{B}^{N}}u= K(d(x))Q_{u}(u,v) \\\\ -\\Delta_{\\mathbb{B}^{N}}v= K(d(x))Q_{v}(u,v) \\end{eqnarray*} in the hyperbolic space $\\mathbb{B}^{N}$, $N\\geq 3$, where $u, v \\in H_{r}^{1}(\\mathbb{B}^{N})=\\{\\phi\\in H^1(\\mathbb{B}^N): \\phi\\, \\text{is radial}\\}$ and $-\\Delta_{\\mathbb{B}^{N}}$ denotes the Laplace-Beltrami operator on $\\mathbb{B}^N$, $Q \\in C^{1}(\\mathbb{R}\\times \\mathbb{R},\\mathbb{R})$ is a p-homogeneous function, $d(x)=d_{\\mathbb{B}^N}(0,x)$ and $K\\geq0 $ is a continuous function. We prove a compactness result and together with the Clark's theorem we establish the existence of infinitely many solutions.", "revisions": [ { "version": "v1", "updated": "2018-08-10T18:58:22.000Z" } ], "analyses": { "keywords": [ "hyperbolic space", "hénon-type system", "semilinear elliptic system", "laplace-beltrami operator", "compactness result" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }