{ "id": "1808.02849", "version": "v1", "published": "2018-08-08T16:26:38.000Z", "updated": "2018-08-08T16:26:38.000Z", "title": "A Gap Principle for Subvarieties with Finitely Many Periodic Points", "authors": [ "Keping Huang" ], "comment": "12 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "Let $f:X\\rightarrow X$ be a quasi-finite endomorphism of an algebraic variety $X$ defined over a number field $K$ and fix an initial point $a\\in X$. We consider a special case of the dynamical Mordell-Lang Conjecture, where the subvariety $V$ contains only finitely many periodic points and does not contain any positive-dimensional periodic subvariety. We show that the set $\\{n\\in \\mathbb{N}~|~f^n(a) \\in V \\}$ satisfies a strong gap principle.", "revisions": [ { "version": "v1", "updated": "2018-08-08T16:26:38.000Z" } ], "analyses": { "keywords": [ "periodic points", "positive-dimensional periodic subvariety", "strong gap principle", "algebraic variety", "initial point" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }