{ "id": "1808.02781", "version": "v1", "published": "2018-08-08T13:54:42.000Z", "updated": "2018-08-08T13:54:42.000Z", "title": "A Factorisation Algorithm in Adiabatic Quantum Computation", "authors": [ "Tien D. Kieu" ], "comment": "10 pages, 3 figures", "categories": [ "quant-ph" ], "abstract": "The problem of factorising an positive integer $N$ into two integer factors $x$ and $y$ is first reformulated as an optimisation problem over the positive integer domain of the corresponding Diophantine polynomial $Q_N(x,y)=N^2(N-xy)^2 + x(x-y)^2$, of which the solution is unique with $x\\le \\sqrt{N} \\le y$, and $x=1$ if and only if $N$ is prime. An algorithm in the context of Adiabatic Quantum Computation is then proposed for the general factorisation problem.", "revisions": [ { "version": "v1", "updated": "2018-08-08T13:54:42.000Z" } ], "analyses": { "keywords": [ "adiabatic quantum computation", "factorisation algorithm", "general factorisation problem", "integer factors", "positive integer domain" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }