{ "id": "1808.02263", "version": "v1", "published": "2018-08-07T08:58:18.000Z", "updated": "2018-08-07T08:58:18.000Z", "title": "On the moduli of a Dedekind sum", "authors": [ "Kurt Girstmair" ], "categories": [ "math.NT" ], "abstract": "Let $s(a,b)$ denote the classical Dedekind sum and $S(a,b)=12s(a,b)$. Let $k/q$, $q\\in \\Bbb N$, $k\\in \\Bbb Z$, $(k,q)=1$, be the value of $S(a,b)$. In a previous paper we showed that there are pairs $(a_r,b_r)$, $r\\in\\Bbb N$, such that $S(a_r,b_r)=k/q$ for all $r\\in \\Bbb N$, the $b_r$'s growing in $r$ exponentially. Here we exhibit such a sequence with $b_r$ a polynomial of degree $4$ in $r$.", "revisions": [ { "version": "v1", "updated": "2018-08-07T08:58:18.000Z" } ], "analyses": { "keywords": [ "classical dedekind sum", "polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }