{ "id": "1808.02173", "version": "v1", "published": "2018-08-07T01:17:10.000Z", "updated": "2018-08-07T01:17:10.000Z", "title": "Adapted $θ$-Scheme and Its Error Estimates for Backward Stochastic Differential Equations", "authors": [ "Chol-Kyu Pak", "Mun-Chol Kim", "Chang-Ho Rim" ], "comment": "18 pages, 3 tables, 1 figure", "categories": [ "math.NA", "math.PR", "q-fin.MF" ], "abstract": "In this paper we propose a new kind of high order numerical scheme for backward stochastic differential equations(BSDEs). Unlike the traditional $\\theta$-scheme, we reduce truncation errors by taking $\\theta$ carefully for every subinterval according to the characteristics of integrands. We give error estimates of this nonlinear scheme and verify the order of scheme through a typical numerical experiment.", "revisions": [ { "version": "v1", "updated": "2018-08-07T01:17:10.000Z" } ], "analyses": { "subjects": [ "60H35", "65C20", "60H10" ], "keywords": [ "backward stochastic differential equations", "error estimates", "high order numerical scheme", "reduce truncation errors", "nonlinear scheme" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }