{ "id": "1808.01447", "version": "v1", "published": "2018-08-04T08:14:05.000Z", "updated": "2018-08-04T08:14:05.000Z", "title": "$L^p$ Boundedness of Hilbert Transforms and Maximal Functions along Variable Curves", "authors": [ "Junfeng Li", "Haixia Yu" ], "categories": [ "math.CA" ], "abstract": "In this paper, the $L^p$ boundedness of the Hilbert transform along variable curve $(t, P(x_1)\\gamma(t))$ $$H_{P,\\gamma}f(x_1,x_2):=\\mathrm{p.\\,v.}\\int_{-\\infty}^{\\infty}f(x_1-t,x_2-P(x_1)\\gamma(t))\\,\\frac{\\textrm{d}t}{t}$$ and the corresponding maximal function $$M_{P,\\gamma}f(x_1,x_2):=\\sup_{\\varepsilon>0}\\frac{1}{2\\varepsilon}\\int_{-\\varepsilon}^{\\varepsilon}|f(x_1-t,x_2-P(x_1)\\gamma(t))|\\,\\textrm{d}t$$ are obtained, where $p\\in (1,\\infty)$, $P$ is a real polynomial on $\\mathbb{R}$. It gives a positive answer to a concern proposed by Bennett in \\cite{BJ}.", "revisions": [ { "version": "v1", "updated": "2018-08-04T08:14:05.000Z" } ], "analyses": { "keywords": [ "hilbert transform", "variable curve", "boundedness", "corresponding maximal function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }