{ "id": "1808.01172", "version": "v1", "published": "2018-08-03T12:16:18.000Z", "updated": "2018-08-03T12:16:18.000Z", "title": "Maximum Entropy Principle in statistical inference: case for non-Shannonian entropies", "authors": [ "Petr Jizba", "Jan Korbel" ], "comment": "6 pages, 6 pages of Supplementary material", "categories": [ "cond-mat.stat-mech", "math-ph", "math.MP" ], "abstract": "In this letter we show that the Shore--Johnson axioms for Maximum Entropy Principle in statistical estimation theory account for a considerably wider class of entropic functional than previously thought. Apart from a formal side of the proof, we substantiate our point by analyzing the effect of weak correlations and discuss two pertinent examples: $2$-qubit quantum system and strongly interacting nuclear systems.", "revisions": [ { "version": "v1", "updated": "2018-08-03T12:16:18.000Z" } ], "analyses": { "keywords": [ "maximum entropy principle", "non-shannonian entropies", "statistical inference", "statistical estimation theory account", "qubit quantum system" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }