{ "id": "1808.00611", "version": "v1", "published": "2018-08-02T00:36:14.000Z", "updated": "2018-08-02T00:36:14.000Z", "title": "Embeddings for the space $LD_γ^{p}$ on sets of finite perimeter", "authors": [ "Nikolai V. Chemetov", "Anna L. Mazzucato" ], "comment": "20 pages, 3 figures", "categories": [ "math.AP" ], "abstract": "Given an open set with finite perimeter $\\Omega\\subset \\mathbb{R}^n$, we consider the space $LD_\\gamma^{p}(\\Omega)$, $1\\leq p<\\infty$, of functions with $p$th-integrable deformation tensor on $\\Omega$ and with $p$ th-integrable trace value on the essential boundary of $\\Omega$. We establish the continuous embedding $LD_\\gamma^{p}(\\Omega)\\subset L^{pN/(N-1)}(\\Omega)$. The space $LD_\\gamma^{p}(\\Omega)$ and this embedding arise naturally in studying the motion of rigid bodies in a viscous, incompressible fluid.", "revisions": [ { "version": "v1", "updated": "2018-08-02T00:36:14.000Z" } ], "analyses": { "subjects": [ "46E35", "74F10" ], "keywords": [ "finite perimeter", "open set", "th-integrable trace value", "rigid bodies", "essential boundary" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }