{ "id": "1808.00253", "version": "v1", "published": "2018-08-01T10:29:48.000Z", "updated": "2018-08-01T10:29:48.000Z", "title": "A Criterion for Solvability of a Finite Group by the Sum of Element Orders", "authors": [ "Morteza Baniasad Azad", "Behrooz Khosravi" ], "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group and $\\psi(G) = \\sum_{g \\in G} o(g)$, where $o(g)$ denotes the order of $g \\in G$. In [M. Herzog, et. al., Two new criteria for solvability of finite groups, J. Algebra, 2018], the authors put forward the following conjecture: \\textbf{Conjecture.} \\textit{If $G$ is a group of order $n$ and $\\psi(G)>211\\psi(C_n)/1617 $, where $C_n$ is the cyclic group of order $n$, then $G$ is solvable.} In this paper we prove the validity of this conjecture.", "revisions": [ { "version": "v1", "updated": "2018-08-01T10:29:48.000Z" } ], "analyses": { "keywords": [ "finite group", "element orders", "solvability", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }