{ "id": "1807.11191", "version": "v1", "published": "2018-07-30T06:53:17.000Z", "updated": "2018-07-30T06:53:17.000Z", "title": "Nehari Manifold for fractional Kirchhoff system with critical nonlinearity", "authors": [ "J. M. do Ó", "J. Giacomoni", "P. K. Mishra" ], "categories": [ "math.AP" ], "abstract": "In this paper, we show the existence and multiplicity of positive solutions of the following fractional Kirchhoff system\\\\ \\begin{equation} \\left\\{ \\begin{array}{rllll} \\mc L_M(u)&=\\lambda f(x)|u|^{q-2}u+ \\frac{2\\alpha}{\\alpha+\\beta}\\left|u\\right|^{\\alpha-2}u|v|^\\beta & \\text{in } \\Omega,\\\\ \\mc L_M(v)&=\\mu g(x)|v|^{q-2}v+ \\frac{2\\beta}{\\alpha+\\beta}\\left|u\\right|^{\\alpha}|v|^{\\beta-2}v & \\text{in } \\Omega,\\\\ u&=v=0 &\\mbox{in } \\mathbb{R}^{N}\\setminus \\Omega, \\end{array} \\right. \\end{equation} where $\\mc L_M(u)=M\\left(\\displaystyle \\int_\\Omega|(-\\Delta)^{\\frac{s}{2}}u|^2dx\\right)(-\\Delta)^{s} u $ is a double non-local operator due to Kirchhoff term $M(t)=a+b t$ with $a, b>0$ and fractional Laplacian $(-\\Delta)^{s}, s\\in(0, 1)$. We consider that $\\Omega$ is a bounded domain in $\\mathbb{R}^N$, {$2s0$ are {real} parameters, $1