{ "id": "1807.11166", "version": "v1", "published": "2018-07-30T04:26:51.000Z", "updated": "2018-07-30T04:26:51.000Z", "title": "Symmetry of Birkhoff-James orthogonality of operators defined between infinite dimensional Banach spaces", "authors": [ "Kallol Paul", "Arpita Mal", "Pawel Wójcik" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "We study left symmetric bounded linear operators in the sense of Birkhoff-James orthogonality defined between infinite dimensional Banach spaces. We prove that a bounded linear operator defined between two strictly convex Banach spaces is left symmetric if and only if it is zero operator when the domain space is reflexive and Kadets-Klee. We exhibit a non-zero left symmetric operator when the spaces are not strictly convex. We also study right symmetric bounded linear operators between infinite dimensional Banach spaces.", "revisions": [ { "version": "v1", "updated": "2018-07-30T04:26:51.000Z" } ], "analyses": { "subjects": [ "47L05", "46B20" ], "keywords": [ "infinite dimensional banach spaces", "birkhoff-james orthogonality", "right symmetric bounded linear", "left symmetric bounded linear operators" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }