{ "id": "1807.11093", "version": "v1", "published": "2018-07-29T18:19:58.000Z", "updated": "2018-07-29T18:19:58.000Z", "title": "Zeros of partial sums of $L$-functions", "authors": [ "Arindam Roy", "Akshaa Vatwani" ], "comment": "27 pages", "categories": [ "math.NT" ], "abstract": "We consider a certain class of multiplicative functions $f: \\mathbb N \\rightarrow \\mathbb C$. Let $F(s)= \\sum_{n=1}^\\infty f(n)n^{-s}$ be the associated Dirichlet series and $F_N(s)= \\sum_{n\\le N} f(n)n^{-s}$ be the truncated Dirichlet series. In this setting, we obtain new Hal\\'asz-type results for the logarithmic mean value of $f$. More precisely, we prove estimates for the sum $\\sum_{n=1}^x f(n)/n$ in terms of the size of $|F(1+1/\\log x)|$ and show that these estimates are sharp. As a consequence of our mean value estimates, we establish non-trivial zero-free regions for these partial sums $F_N(s)$. In particular, we study the zero distribution of partial sums of the Dedekind zeta function of a number field $K$. More precisely, we give some improved results for the number of zeros up to height $T$ as well as new zero density results for the number of zeros up to height $T$, lying to the right of $\\Re(s) =\\sigma$, where $\\sigma > 1/2$.", "revisions": [ { "version": "v1", "updated": "2018-07-29T18:19:58.000Z" } ], "analyses": { "subjects": [ "11M41" ], "keywords": [ "partial sums", "establish non-trivial zero-free regions", "zero density results", "mean value estimates", "logarithmic mean value" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }