{ "id": "1807.10862", "version": "v1", "published": "2018-07-28T01:11:20.000Z", "updated": "2018-07-28T01:11:20.000Z", "title": "Simple $\\mathcal{L}$-invariants for $\\mathrm{GL}_n$", "authors": [ "Yiwen Ding" ], "comment": "55 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "Let $L$ be a finite extension of $\\mathbb{Q}_p$, and $\\rho_L$ be an $n$-dimensional semi-stable non crystalline $p$-adic representation of $\\mathrm{Gal}_L$ with full monodromy rank. Via a study of Breuil's (simple) $\\mathcal{L}$-invariants, we attach to $\\rho_L$ a locally $\\mathbb{Q}_p$-analytic representation $\\Pi(\\rho_L)$ of $\\mathrm{GL}_n(L)$, which carries the exact information of the Fontaine-Mazur simple $\\mathcal{L}$-invariants of $\\rho_L$. When $\\rho_L$ comes from an automorphic representation of $G(\\mathbb{A}_{F^+})$ (for a unitary group $G$ over a totally real filed $F^+$ which is compact at infinite places and $\\mathrm{GL}_n$ at $p$-adic places), we prove under mild hypothesis that $\\Pi(\\rho_L)$ is a subrerpresentation of the associated Hecke-isotypic subspaces of the Banach spaces of $p$-adic automorphic forms on $G(\\mathbb{A}_{F^+})$. In other words, we prove the equality of Breuil's simple $\\mathcal{L}$-invariants and Fontaine-Mazur simple $\\mathcal{L}$-invariants.", "revisions": [ { "version": "v1", "updated": "2018-07-28T01:11:20.000Z" } ], "analyses": { "keywords": [ "invariants", "fontaine-mazur simple", "dimensional semi-stable non crystalline", "adic automorphic forms", "full monodromy rank" ], "note": { "typesetting": "TeX", "pages": 55, "language": "en", "license": "arXiv", "status": "editable" } } }