{ "id": "1807.10365", "version": "v1", "published": "2018-07-26T21:06:29.000Z", "updated": "2018-07-26T21:06:29.000Z", "title": "Groundstate asymptotics for a class of singularly perturbed $p$-Laplacian problems in $\\R^N$", "authors": [ "Wedad Albalawi", "Carlo Mercuri", "Vitaly Moroz" ], "comment": "38 pages", "categories": [ "math.AP" ], "abstract": "We study the asymptotic behavior of positive groundstate solutions to the quasilinear elliptic equation \\begin{equation} -\\Delta_{p} u + \\varepsilon u^{p-1} - u^{q-1} +u^{\\mathit{l}-1} = 0 \\qquad \\text{in} \\quad \\mathbb{R}^{N}, \\end{equation} where $1
0 $ is a small parameter. For $\\varepsilon\\rightarrow 0$, we give a characterisation of asymptotic regimes as a function of the parameters $q$, $l$ and $N$. In particular, we show that the behavior of the groundstates is sensitive to whether $q$ is less than, equal to, or greater than the critical Sobolev exponent $p^{*} :=\\frac{pN}{N-p}$.", "revisions": [ { "version": "v1", "updated": "2018-07-26T21:06:29.000Z" } ], "analyses": { "keywords": [ "laplacian problems", "groundstate asymptotics", "quasilinear elliptic equation", "positive groundstate solutions", "asymptotic behavior" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }