{ "id": "1807.10017", "version": "v1", "published": "2018-07-26T08:53:48.000Z", "updated": "2018-07-26T08:53:48.000Z", "title": "Non uniform rotating vortices and periodic orbits for the two-dimensional Euler Equations", "authors": [ "Claudia GarcĂ­a", "Taoufik Hmidi", "Juan Soler" ], "comment": "115 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "This paper concerns the study of some special ordered structures in turbulent flows. In particular, a systematic and relevant methodology is proposed to construct non trivial and non radial rotating vortices with non necessarily uniform densities and with different $m$--fold symmetries, $m\\ge 1$. In particular, a complete study is provided for the truncated quadratic density $(A|x|^2+B){\\bf{1}}_{\\mathbb{D}}(x)$, with $\\mathbb{D}$ the unit disc. We exhibit different behaviors with respect to the coefficients $A$ and $B$ describing the rarefaction of bifurcating curves.", "revisions": [ { "version": "v1", "updated": "2018-07-26T08:53:48.000Z" } ], "analyses": { "subjects": [ "35Q31", "35Q35", "76B03", "76B03", "76U05", "35B32", "35P30" ], "keywords": [ "non uniform rotating vortices", "two-dimensional euler equations", "periodic orbits", "construct non trivial", "non radial rotating vortices" ], "note": { "typesetting": "TeX", "pages": 115, "language": "en", "license": "arXiv", "status": "editable" } } }