{ "id": "1807.09933", "version": "v1", "published": "2018-07-26T03:08:26.000Z", "updated": "2018-07-26T03:08:26.000Z", "title": "On the center of the group of quasi-isometries of the real line", "authors": [ "Prateep Chakraborty" ], "comment": "4 pages", "categories": [ "math.GT" ], "abstract": "Let $QI(\\mathbb{R})$ denote the group of all quasi-isometries $f:\\mathbb{R}\\to \\mathbb{R}.$ Let $Q_+( \\text{and}~ Q_-)$ denote the subgroup of $QI(\\mathbb{R})$ consisting of elements which are identity near $-\\infty$ (resp. $+\\infty$). We denote by $QI^+(\\mathbb R)$ the index $2$ subgroup of $QI(\\mathbb R)$ that fixes the ends $+\\infty, -\\infty$. We show that $QI^+(\\mathbb R)\\cong Q_+\\times Q_-$. Using this we show that the center of the group $QI(\\mathbb{R})$ is trivial.", "revisions": [ { "version": "v1", "updated": "2018-07-26T03:08:26.000Z" } ], "analyses": { "subjects": [ "20F38", "20F65" ], "keywords": [ "real line", "quasi-isometries" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }