{ "id": "1807.09139", "version": "v1", "published": "2018-07-24T14:15:32.000Z", "updated": "2018-07-24T14:15:32.000Z", "title": "Minimum supports of functions on the Hamming graphs with spectral constrains", "authors": [ "Alexandr Valyuzhenich", "Konstantin Vorob'ev" ], "comment": "18 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "We study functions defined on the vertices of the Hamming graphs $H(n,q)$. The adjacency matrix of $H(n,q)$ has $n+1$ distinct eigenvalues $n(q-1)-q\\cdot i$ with corresponding eigenspaces $U_{i}(n,q)$ for $0\\leq i\\leq n$. In this work, we consider the problem of finding the minimum possible support (the number of nonzeros) of functions belonging to a direct sum $U_i(n,q)\\oplus U_{i+1}(n,q)\\oplus\\ldots\\oplus U_j(n,q)$ for $0\\leq i\\leq j\\leq n$. For the case $n\\geq i+j$ and $q\\geq 3$ we find the minimum cardinality of the support of such functions and obtain a characterization of functions with the minimum cardinality of the support. In the case $n \\frac{n}{2}$,$\\,q\\ge 5$.", "revisions": [ { "version": "v1", "updated": "2018-07-24T14:15:32.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "minimum cardinality", "hamming graphs", "minimum supports", "spectral constrains", "adjacency matrix" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }