{ "id": "1807.09118", "version": "v1", "published": "2018-07-24T13:59:54.000Z", "updated": "2018-07-24T13:59:54.000Z", "title": "Cameron-Liebler line classes of ${\\rm PG}(3,q)$ admitting ${\\rm PGL}(2,q)$", "authors": [ "Antonio Cossidente", "Francesco Pavese" ], "categories": [ "math.CO" ], "abstract": "In this paper we describe an infinite family of Cameron-Liebler line classes of ${\\rm PG}(3,q)$ with parameter $(q^2 + 1)/2$, $q\\equiv 1\\pmod{4}$. The example obtained admits ${\\rm PGL}(2,q)$ as an automorphism group and it is shown to be isomorphic to none of the infinite families known so far whenever $q \\ge 9$.", "revisions": [ { "version": "v1", "updated": "2018-07-24T13:59:54.000Z" } ], "analyses": { "keywords": [ "cameron-liebler line classes", "automorphism group", "infinite family", "isomorphic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }