{ "id": "1807.08795", "version": "v1", "published": "2018-07-23T19:25:45.000Z", "updated": "2018-07-23T19:25:45.000Z", "title": "Khovanov homotopy type and periodic links", "authors": [ "Maciej Borodzik", "Wojciech Politarczyk", "Marithania Silvero" ], "comment": "44 pages, 11 figures. Comments welcome", "categories": [ "math.GT" ], "abstract": "Given an $m$-periodic link $L\\subset S^3$, we show that the Khovanov spectrum $\\X_L$ constructed by Lipshitz and Sarkar admits a group action. We relate the Borel cohomology of $\\X_L$ to the equivariant Khovanov homology of $L$ constructed by the second author. The action of Steenrod algebra on the cohomology of $\\X_L$ gives an extra structure of the periodic link.", "revisions": [ { "version": "v1", "updated": "2018-07-23T19:25:45.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "periodic link", "khovanov homotopy type", "equivariant khovanov homology", "extra structure", "khovanov spectrum" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }