{ "id": "1807.08406", "version": "v1", "published": "2018-07-23T02:32:33.000Z", "updated": "2018-07-23T02:32:33.000Z", "title": "A compactness theorem for scalar-flat metrics on 3-manifolds with boundary", "authors": [ "Sergio Almaraz", "Olivaine S. de Queiroz", "Shaodong Wang" ], "comment": "24 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "Let (M,g) be a compact Riemannian three-dimensional manifold with boundary. We prove the compactness of the set of scalar-flat metrics which are in the conformal class of g and have the boundary as a constant mean curvature hypersurface. This involves a blow-up analysis of a Yamabe-type equation with critical Sobolev exponent on the boundary.", "revisions": [ { "version": "v1", "updated": "2018-07-23T02:32:33.000Z" } ], "analyses": { "subjects": [ "53C21", "35J65" ], "keywords": [ "scalar-flat metrics", "compactness theorem", "compact riemannian three-dimensional manifold", "constant mean curvature hypersurface", "blow-up analysis" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }