{ "id": "1807.08330", "version": "v1", "published": "2018-07-22T17:52:33.000Z", "updated": "2018-07-22T17:52:33.000Z", "title": "An interesting class of Hankel determinants", "authors": [ "Johann Cigler", "Mike Tyson" ], "comment": "23 pages", "categories": [ "math.CO", "math.RA" ], "abstract": "For small $r$ the Hankel determinants $d_r(n)$ of the sequence $\\left({2n+r\\choose n}\\right)_{n\\ge 0}$ are easy to guess and show an interesting modular pattern. For arbitrary $r$ and $n$ no closed formulae are known, but for each positive integer $r$ the special values $d_r(rn)$, $d_r(rn+1)$, and $d_r(rn+\\lfloor\\frac{r+1}{2}\\rfloor)$ have nice values which will be proved in this paper.", "revisions": [ { "version": "v1", "updated": "2018-07-22T17:52:33.000Z" } ], "analyses": { "subjects": [ "05A10", "11C20", "11B39", "15B36" ], "keywords": [ "hankel determinants", "interesting class", "special values", "nice values", "interesting modular" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }