{ "id": "1807.08112", "version": "v1", "published": "2018-07-21T09:33:32.000Z", "updated": "2018-07-21T09:33:32.000Z", "title": "On the $α$-spectral radius of uniform hypergraphs", "authors": [ "HaiYan Guo", "Bo Zhou" ], "categories": [ "math.CO" ], "abstract": "For $0\\le\\alpha<1$ and a uniform hypergraph $G$, the $\\alpha$-spectral radius of $G$ is the largest $H$-eigenvalue of $\\alpha \\mathcal{D}(G) +(1-\\alpha)\\mathcal{A}(G)$, where $\\mathcal{D}(G)$ and $\\mathcal{A}(G)$ are the diagonal tensor of degrees and the adjacency tensor of $G$, respectively. We give upper bounds for the $\\alpha$-spectral radius of a uniform hypergraph, propose some transformations that increase the $\\alpha$-spectral radius, and determine the unique hypergraphs with maximum $\\alpha$-spectral radius in some classes of uniform hypergraphs.", "revisions": [ { "version": "v1", "updated": "2018-07-21T09:33:32.000Z" } ], "analyses": { "keywords": [ "spectral radius", "uniform hypergraph", "unique hypergraphs", "adjacency tensor", "upper bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }