{ "id": "1807.08052", "version": "v1", "published": "2018-07-20T23:09:18.000Z", "updated": "2018-07-20T23:09:18.000Z", "title": "Factorization patterns on nonlinear families of univariate polynomials over a finite field", "authors": [ "Guillermo Matera", "Mariana Pérez", "Melina Privitelli" ], "comment": "37 pages", "categories": [ "math.CO" ], "abstract": "We estimate the number $|\\mathcal{A}_{\\boldsymbol\\lambda}|$ of elements on a nonlinear family $\\mathcal{A}$ of monic polynomials of $\\mathbb{F}_q[T]$ of degree $r$ having factorization pattern $\\boldsymbol\\lambda:=1^{\\lambda_1}2^{\\lambda_2}\\cdots r^{\\lambda_r}$. We show that $|\\mathcal{A}_{\\boldsymbol\\lambda}|= \\mathcal{T}(\\boldsymbol\\lambda)\\,q^{r-m}+\\mathcal{O}(q^{r-m-{1}/{2}})$, where $\\mathcal{T}(\\boldsymbol\\lambda)$ is the proportion of elements of the symmetric group of $r$ elements with cycle pattern $\\boldsymbol\\lambda$ and $m$ is the codimension of $\\mathcal{A}$. We provide explicit upper bounds for the constants underlying the $\\mathcal{O}$--notation in terms of $\\boldsymbol\\lambda$ and $\\mathcal{A}$ with \"good\" behavior. We also apply these results to analyze the average--case complexity of the classical factorization algorithm restricted to $\\mathcal{A}$, showing that it behaves as good as in the general case.", "revisions": [ { "version": "v1", "updated": "2018-07-20T23:09:18.000Z" } ], "analyses": { "keywords": [ "factorization pattern", "univariate polynomials", "nonlinear family", "finite field", "explicit upper bounds" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }