{ "id": "1807.07011", "version": "v1", "published": "2018-07-18T16:00:56.000Z", "updated": "2018-07-18T16:00:56.000Z", "title": "Time-frequency analysis on the adeles over the rationals", "authors": [ "Ulrik B. R. Enstad", "Mads S. Jakobsen", "Franz Luef" ], "categories": [ "math.FA" ], "abstract": "We show that the construction of Gabor frames in $L^{2}(\\mathbb{R})$ with generators in $\\mathbf{S}_{0}(\\mathbb{R})$ and with respect to time-frequency shifts from a rectangular lattice $\\alpha\\mathbb{Z}\\times\\beta\\mathbb{Z}$ is equivalent to the construction of certain Gabor frames for $L^{2}$ over the adeles over the rationals and the group $\\mathbb{R}\\times\\mathbb{Q}_{p}$. Furthermore, we detail the connection between the construction of Gabor frames on the adeles and on $\\mathbb{R}\\times\\mathbb{Q}_{p}$ with the construction of certain Heisenberg modules.", "revisions": [ { "version": "v1", "updated": "2018-07-18T16:00:56.000Z" } ], "analyses": { "keywords": [ "time-frequency analysis", "gabor frames", "construction", "heisenberg modules", "rectangular lattice" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }