{ "id": "1807.05549", "version": "v1", "published": "2018-07-15T13:44:55.000Z", "updated": "2018-07-15T13:44:55.000Z", "title": "Symmetric tensor categories in characteristic 2", "authors": [ "Dave Benson", "Pavel Etingof" ], "comment": "23 pages, latex", "categories": [ "math.RT" ], "abstract": "We construct and study a nested sequence of finite symmetric tensor categories ${\\rm Vec}=\\mathcal{C}_0\\subset \\mathcal{C}_1\\subset\\cdots\\subset \\mathcal{C}_n\\subset\\cdots$ over a field of characteristic $2$ such that $\\mathcal{C}_{2n}$ are incompressible, i.e., do not admit tensor functors into tensor categories of smaller Frobenius--Perron dimension. This generalizes the category $\\mathcal{C}_1$ described by Venkatesh and the category $\\mathcal{C}_2$ defined by Ostrik. The Grothendieck rings of the categories $\\mathcal{C}_{2n}$ and $\\mathcal{C}_{2n+1}$ are both isomorphic to the ring of real cyclotomic integers defined by a primitive $2^{n+2}$-th root of unity, $\\mathcal{O}_n=\\mathbb Z[2\\cos(\\pi/2^{n+1})]$.", "revisions": [ { "version": "v1", "updated": "2018-07-15T13:44:55.000Z" } ], "analyses": { "keywords": [ "characteristic", "finite symmetric tensor categories", "real cyclotomic integers", "admit tensor functors", "smaller frobenius-perron dimension" ], "note": { "typesetting": "LaTeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }