{ "id": "1807.05414", "version": "v1", "published": "2018-07-14T15:57:38.000Z", "updated": "2018-07-14T15:57:38.000Z", "title": "Symmetric exclusion as a random environment: invariance principle", "authors": [ "Milton Jara", "Otávio Menezes" ], "comment": "24 pages", "categories": [ "math.PR" ], "abstract": "We establish an invariance principle for a one-dimensional random walk in a dynamical random environment given by a speed-change exclusion process. The jump probabilities of the walk depend on the configuration of the exclusion in a finite box around the walker. The environment starts from equilibrium. After a suitable space-time rescaling, the random walk converges to a sum of two independent processes, a Brownian motion and a Gaussian process with stationary increments.", "revisions": [ { "version": "v1", "updated": "2018-07-14T15:57:38.000Z" } ], "analyses": { "subjects": [ "60K35", "60K37" ], "keywords": [ "invariance principle", "symmetric exclusion", "random walk converges", "speed-change exclusion process", "one-dimensional random walk" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }