{ "id": "1807.04959", "version": "v1", "published": "2018-07-13T07:56:21.000Z", "updated": "2018-07-13T07:56:21.000Z", "title": "A note on some special $p$-groups", "authors": [ "Farangis Johari", "Peyman Niroomand" ], "categories": [ "math.GR" ], "abstract": "Recently Rai obtained an upper bound for the order of the Schur multiplier of a $d$-generator special $p$-group when its derived subgroup has the maximum value $ p^{\\frac{1}{2}d(d-1)}$ for $ d\\geq 3 $ and $ p\\neq 2. $ Here we try to obtain the Schur multiplier, the exterior square and the tensor square of such $p$-groups. Then we specify which ones are capable. Moreover, we give an upper bound for the order of the Schur multiplier, the exterior product and the tensor square of a $d$-generator special $p$-group $ G $ when $ |G'|=p^{\\frac{1}{2}d(d-1)-1}$ for $ d\\geq 3 $ and $ p\\neq 2. $ Additionally, when $ G $ is of exponent $ p, $ we give the structure of $ G. $", "revisions": [ { "version": "v1", "updated": "2018-07-13T07:56:21.000Z" } ], "analyses": { "subjects": [ "20D15", "20E34" ], "keywords": [ "schur multiplier", "generator special", "upper bound", "tensor square", "exterior product" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }