{ "id": "1807.04940", "version": "v1", "published": "2018-07-13T07:02:10.000Z", "updated": "2018-07-13T07:02:10.000Z", "title": "Sharp existence and nonexistence results for an elliptic equation associated with Caffarelli-Kohn-Nirenberg inequalities", "authors": [ "John Villavert" ], "comment": "25 pages; submitted; comments are welcome", "categories": [ "math.AP" ], "abstract": "This article establishes sharp existence and Liouville type theorems for the following nonlinear elliptic equation with singular coefficients, \\begin{equation*} -div (|x|^{a} D u ) = |x|^{b}u^{p}, ~ u > 0,\\, \\mbox{ in } \\mathbb{R}^N, \\end{equation*} where $N \\geq 3$, $p > 1$, and $b > a - 2 > -N$. In certain cases, this recovers the Euler-Lagrange equations connected with finding the best constant in Sobolev and Caffarelli-Kohn-Nirenberg inequalities. The first main result indicates that regular solutions exist if and only if the exponent $p$ is either critical or supercritical, i.e., either \\begin{equation*} p = \\frac{N + 2 + 2b - a}{N - 2 + a} ~ \\mbox{ or } ~ p > \\frac{N + 2 + 2b - a}{N - 2 + a}, \\mbox{ respectively}. \\end{equation*} Similarly, the second main result provides necessary and sufficient conditions for the existence of finite energy solutions.", "revisions": [ { "version": "v1", "updated": "2018-07-13T07:02:10.000Z" } ], "analyses": { "subjects": [ "35B33", "35B53", "35J15", "35J75", "35B40", "35B65" ], "keywords": [ "caffarelli-kohn-nirenberg inequalities", "nonexistence results", "article establishes sharp existence", "liouville type theorems", "second main result" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }