{ "id": "1807.04858", "version": "v1", "published": "2018-07-12T23:13:07.000Z", "updated": "2018-07-12T23:13:07.000Z", "title": "Super Poincar'e inequality for a dynamic model for the two-parameter Dirichlet process", "authors": [ "Weiwei Zhang" ], "categories": [ "math.PR" ], "abstract": "In this paper, we establish the super Poincar'e inequality for the two-parameter Dirichlet process when the partition number of the state space is finite. Furthermore, if the partition number is infinite, the super Poincar'e inequality doesn't hold. To overcome the difficulty caused by the degenerency of the diffusion coefficient on the boundary of the domain, localization method and perturbation argument in [14] are effective.", "revisions": [ { "version": "v1", "updated": "2018-07-12T23:13:07.000Z" } ], "analyses": { "keywords": [ "super poincare inequality", "two-parameter dirichlet process", "dynamic model", "partition number", "state space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }